domingo, 30 de noviembre de 2008




metodos anticoceptivos

Un método anticonceptivo es una metodología que impide o reduce la posibilidad de que ocurra la fecundación o el embarazo al mantener relaciones sexuales. Por lo general implica acciones, dispositivos o medicamentos en las que cada uno tiene su nivel de efectividad. También se le llama contracepción o anticoncepción, en el sentido de ser formas de control de la natalidad.
La historia del control de la natalidad se remonta al descubrimiento que la relación sexual está asociada al embarazo. Las formas más antiguas incluían el coitus interruptus y la combinación de hierbas con supuestas propiedades contraceptivas o abortivas. El registro más antiguo del control de la natalidad presenta instrucciones anticonceptivas en el Antiguo Egipto.


Tipos de métodos anticonceptivos

Métodos de barrera
Preservativo. Tiene una versión femenina y una masculina.
Diafragma. Una variedad más pequeña de éste es el capuchón cervical.
LeaContraceptivum. Un tamaño, él permanece en lugar debido a la succión.
Los métodos de barrera impiden la entrada de esperma al útero.
Los condones masculinos son recubrimientos delgados de caucho, vinilo o productos naturales que se colocan sobre el pene erecto. Los condones masculinos pueden ser tratados con espermicida para ofrecer mayor protección. Los condones masculinos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH o SIDA) pasen de un miembro de la pareja a otro (sólo los condones de látex y vinilo.)
Los condones femeninos son un recubrimiento delgado de plástico poliuretano con aros de poliuretano en extremos opuestos. Estos se introducen en la vagina antes del coito. Al igual que los condones masculinos, los condones femeninos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH o SIDA) pasen de un miembro de la pareja a otro

Métodos químicos y hormonales
Espermicidas. Los espermicidas son productos químicos (por lo general, nonoxinol-9) que desactivan o matan a los espermatozoides. Están disponibles en aerosoles (espumas), cremas, tabletas vaginales, supositorios o películas vaginales disolubles. Los espermicidas causan la ruptura de las membranas de los espermatozoides, lo cual disminuye su movimiento (motilidad y movilidad), así como su capacidad de fecundar el óvulo.
La anticoncepción hormonal se puede aplicar de diversas formas.
Vía oral, por la píldora anticonceptiva
Anticonceptivo subdérmico Implante compuesto por una varilla del tamaño de un cerillo que se coloca por debajo de la piel del brazo de la mujer, ofreciendo protección anticonceptiva por tres años sin ser definitivo, el médico que ha recibido capacitación puede retirarlo en cualquier momento retornando la mujer en un tiempo mínimo a la fertilidad.
Anillo vaginal Único de administración vaginal mensual. Es el método más innovador en anticoncepción femenina: un anillo transparente, suave y flexible que se coloca por la misma usuaria por vía vaginal liberando diariamente las dosis más bajas de hormonas.
Píldora trifásica Método anticonceptivo altamente eficaz de dosis hormonales bajas con un balance hormonal suave y escalonado que imita al ciclo fisiológico de la mujer en forma secuencial progresiva etapa reproductiva brindando estricto control del ciclo, además reduce la grasa facial. También puede ser indicado para el tratamiento de acné leve a moderado.
Píldora anticonceptiva libre de estrógenos, recomendada para mujeres que no pueden o no desean tomarlos; la dosis hormonal es tan ligera que entre otras indicaciones es la única píldora recetada durante la lactancia.
Píldora del día después Método hormonal de uso ocasional. La anticoncepción de emergencia, se trata de la administración de un producto hormonal no abortivo que evita la ovulación y de esta forma previene el embarazo en aquellas mujeres que tuvieron relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección, incluyendo los casos de violación.
Aunque este tratamiento se conoce también como "la píldora del día siguiente", el término puede ser engañoso pues debe utilizarse inmediatamente después de tener relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección; puede tomarse en un periodo de hasta 72 horas, sin embargo la sugerencia es que la mujer tome 2 píldoras en una sola toma inmediatamente.
También hay anticoncepción hormonal que suprime durante la regla.
Actualmente la anticoncepción hormonal masculina está en desarrollo.
Parches anticonceptivos.
Mediante anillos vaginales.

Método combinado
Considerado por muchos como el método anticonceptivo por excelencia, debido a su alta efectividad (similar a la píldora) y a que no posee muchos de los cuestionamientos religiosos de la píldora. Consiste en combinar el uso de preservativo masculino con una crema espermaticida (eg. Delfen). La crema se coloca con un aplicador especial que viene con el envase y el hombre utiliza el preservativo de la manera habitual. Tiene la ventaja agregada de lubricar el canal vaginal y así facilitar la penetración.

Dispositivo intrauterino (DIU)
Es un método que, mediante la colocación en el interior del útero de un dispositivo plástico con elementos metálicos (ej. cobre), se produce una alteración del microclima intrauterino que dificulta de gran manera la fecundación y también la implantación del óvulo fecundado. Este, sin embargo, no ha demostrado ser 100% eficiente, ya que se han dado casos especiales en donde la mujer, pese a tener el método anticonceptivo ya mencionado, se embaraza y da a luz un niño con el aparato incrustado en alguna parte del cuerpo.

Métodos naturales
Artículo principal: Métodos anticonceptivos naturales
Los métodos naturales de conocimiento de la fertilidad, se basan en la observación de síntomas asociados a los procesos fisiológicos que dan lugar a la ovulación y a la adaptación del acto sexual a las fases fértiles o infértiles del ciclo menstrual en función de que se desee o no una concepción, sin el uso de fármacos, procedimientos mecánicos ni quirúrgicos.Algunos métodos predictivos son aún enseñados con cierta preferencia en las escuelas ginecológicas, como el método de Ogino-Knauss o método del ciclo, mientras que otras técnicas, tan ancestrales como el Coitus interruptus tienen hoy en día una fiabilidad que es similar a la de otros métodos no quirúrgicos.
Otros métodos naturales están basados en la conciencia de la fertilidad, es decir, la mujer observa con atención y registra los signos de fertilidad en su cuerpo para determinar las fases fértiles o infértiles. Los síntomas específicos caen en tres categorías: cambios en temperatura basal, en el moco cervical y la posición cervical. El registrar tanto la temperatura basal como otro signo primario, se conoce como el método sintotermal.otras metodologías incluyen el monitoreo de los niveles en orina de estrógeno y LH a lo largo del ciclo menstrual.
La Organización Mundial de la Salud clasifica los métodos modernos de planificación familiar natural como buenos o muy buenos, con valores de índice de Pearl menores de 1. La Sociedad Española de Ginecología y Obstetricia ha publicado un documento consenso sobre los métodos naturales de PFN.
Estos métodos de planificación familiar son apoyados y promovidos por la Iglesia Católica para la vivencia y el ejercicio de lo que esa institución denomina una paternidad responsable, como queda reflejado en la Encíclica Humanae Vitae. Son métodos que, para que puedan ser utilizados como métodos seguros de control de la fertilidad, requieren cierto grado de disciplina en la autoobservación/anotación y un correcto aprendizaje con materiales y personal bien preparado. Una crítica a estos métodos es la de que no previenen el SIDA o cualquier otra enfermedad de transmisión sexual, ya que al igual que la píldora anticonceptiva, el anillo vaginal y otros métodos no naturales, que implican contacto físico directo, no se protegen de dichas enfermedades.
De los métodos naturales no son recomendables el método Ogino/Knauss ni el coitus interruptus por falta de eficacia.En cuanto a los métodos modernos, el más eficaz es el sintotérmico con doble control, significativamente superior en eficacia sobre el Método de la Ovulación.

Métodos simples
Temperatura basal: El método de la temperatura basal se sirve del aumento que la progesterona induce en la temperatura corporal interna de la mujer durante la ovulación y determina, una vez diagnosticada, infertilidad postovulatoria. Para ello la mujer deberá determinar la temperatura corporal interna a lo largo del ciclo menstrual. El método de la temperatura basal estricto circunscribe el periodo de infertilidad a los días posteriores a la subida de temperatura exclusivamente. El método de la temperatura basal extendido define, cumplidas ciertas condiciones, 6 días de infertilidad preovulatoria. El método de la temperatura basal es altamente fiable en el periodo postovulatorio, y supone la base de la mayoría de los métodos naturales modernos. Sin embargo tiene limitaciones a la hora de determinar la infertilidad preovulatoria.
Método de la ovulación (método Billings y otros): El método de la ovulación se basa en la observación diaria de los cambios del moco cervical a lo largo del ciclo femenino, cambios que se asocian a los aumentos en los niveles de estrógenos previos al momento de la ovulación. Normalmente, las fases de infertilidad de la mujer se caracterizan por una ausencia de moco cervical visible y una sensación de sequedad vaginal. Conforme se acerca el momento de la ovulación el moco cervical se hace a lo largo de varios días y de forma progresiva, cada vez más líquido, elástico y transparente. Próximo al momento de la ovulación se produce el llamado pico de moco caracterizado por un cambio abrupto de las propiedades el moco y su posible desaparición. El moco cervical es un signo de fertilidad y por ello su observación puede ser utilizado para el control de la fertilidad La confiabilidad es superior al 95% en varios países estudiados.Aunque, aplicado correctamente, puede ser considerado un método seguro, es inferior al método de la temperatura en fase postovulatoria. Su utilización es especialmente apto para la consecución del embarazo en casos de hipofertilidad ya que permite concentrar las relaciones sexuales en torno al momento de mayores probabilidades de embarazo. Como método anticonceptivo es especialmente inseguro en mujeres con ciclos monofásicos (durante la menarquia o antes de la menopausia).

Métodos compuestos
Método sintotérmico: Combina el método de la temperatura basal, para el diagnóstico de la infertilidad postovulatoria, en combinación con otra serie de síntomas (moco cervical, cuello del útero, entre otros) y cálculos de longitud de ciclos para la determinación de la infertilidad preovulatoria. Permite beneficiarse de la práctica infalibilidad de la temperatura basal a la hora de determinar la infertilidad postovulatoria y aumentar considerablemente la eficacia en periodo preovulatorio. Su eficacia es equivalente a las modernas preparaciones de anovulatorios orales y solamente inferior a la esterilización quirúrgica. Una ventaja adicional es que es un método válido e igualmente eficaz en todas las circunstancias de la vida reproductiva de la mujer (período post-parto, período post-píldora, premenopausia, etc).

Métos definitivos o irreversibles
dos anticonceptivos Son parcialmente irreversibles:
Ligadura de trompas, o salpingoclasia. Consiste en ligar las trompas de Falopio con grapas a fin de impedir que el óvulo se implante en el útero o que los espermatozoides se encuentren con él.
Vasectomía. Es una operación quirúrgica para seccionar los conductos deferentes que transportan a los espermatozoides de los testículos al exterior cuando se eyacula. Una vez realizada, los espermatozoides que a diario se producen son reabsorbidos por el organismo. Puesto que el líquido seminal es elaborado en la próstata, la vasectomía no impide la eyaculación. Es un proceso reversible aunque con dificultades.

Métodos de emergencia
Píldora del día después. Tiene bastantes efectos secundarios.
El método de Yuzpe tiene una tasa de fallos de hasta el 2% si la mujer lo ha usado en forma correcta, lo cual representa una disminución considerable del riesgo de embarazo, comparado con el no uso de anticoncepción de emergencia. Dependiendo cuando la mujer utilice las píldoras como anticoncepción de emergencia durante el ciclo menstrual, la combinación puede prevenir la ovulación, fertilización o la implantación, se cree que básicamente modifica el revestimiento endometrial impidiendo la implantación. El método de Yuzpe no es abortivo y no es eficaz cuando el proceso de implantación se ha iniciado.
El aborto no es un método anticonceptivo, porque la concepción ya se ha producido. Además tiene el riesgo de cualquier operación.
De todos estos métodos sólo los preservativos y el femy disminuyen la posibilidad de contraer una enfermedad venérea. En algún caso el diafragma puede evitar algún tipo de infección, pero no es eficaz como método general de prevención.
Sexualidad humana
La sexualidad humana representa el conjunto de comportamientos que conciernen la satisfacción de la necesidad y el deseo sexual. Al igual que los otros primates, los seres humanos utilizan la excitación sexual con fines reproductivos y para el mantenimiento de vínculos sociales, pero le agregan el goce y el placer propio y el del otro. El sexo también desarrolla facetas profundas de la afectividad y la conciencia de la personalidad. En relación a esto, muchas culturas dan un sentido religioso o espiritual al acto sexual, así como ven en ello un método para mejorar (o perder) la salud.
La complejidad de los comportamientos sexuales de los humanos es producto de su cultura, su inteligencia y de sus complejas sociedades, y no están gobernados enteramente por los instintos, como ocurre en casi todos los animales. Sin embargo, el motor base del comportamiento sexual humano siguen siendo los instintos, aunque su forma y expresión dependen de la cultura y de elecciones personales; esto da lugar a una gama muy compleja de comportamientos sexuales. En la especie humana, la mujer lleva culturalmente el peso de la preservación de la especie.
En la sexualidad humana pueden distinguirse aspectos relacionados con la salud, el placer, legales, religiosos, etcétera. El concepto de sexualidad comprende tanto el impulso sexual, dirigido al goce inmediato y a la reproducción, como los diferentes aspectos de la relación psicológica con el propio cuerpo (sentirse hombre, mujer o ambos a la vez) y de las expectativas de rol social. En la vida cotidiana, la sexualidad cumple un papel muy destacado ya que, desde el punto de vista emotivo y de la relación entre las personas, va mucho más allá de la finalidad reproductiva y de las normas o sanciones que estipula la socieda
d
.



genetica y herencia



La genética es el estudio de los factores hereditarios o genes. De su transmisión resulta que los hijos se parecen a sus padres más que a otros seres vivientes.
Ese parecido se refiere no sólo a los rasgos de la organización general propios de la clase y especie a la que pertenezca el grupo de progenitores y descendientes, sino a características peculiares de tipo racial o de una variedad determinada; en la especie humana, por ejemplo, se heredan el color del pelo, de los ojos, los grupos sanguíneos, etc.
Desde siempre el hombre se interesó por descubrir el mecanismo hereditario, pero su complejidad es tal que solamente a fines del siglo pasado se pudo conocer el modo de transmisión de los genes, gracias a los estudios del agustino Gregorio Mendel que, en 1856 comenzó una investigación en el huerto de su convento que le llevo al conocimiento de las leyes de la herencia biológica. Realizó sus experimentos en razas de guisantes común, raza que seleccionó y cultivó reiteradamente.
Se ha podido comprobar estudiando escritos de autores anteriores que los hombres tuvieron ya desde la antigüedad algunas ideas sobre la herencia biológica.
Los resultados obtenidos fueron publicados por la Sociedad de Historia Natural de Brunn en 1866, pero tuvieron poca difusión y el mundo científico las pasó por alto. En 1900, fueron redescubiertas las leyes de la herencia, de un modo independiente y simultáneo, por tres investigadores: Hugo de Vries, Karl Correns y Erich Tschermak, que hallaron al rebuscar en la bibliografía la obra de Mendel y tuvieron que ceder a este la prioridad del descubrimiento.
Entre las cuestiones que estudia la genética destacan:
El conocimiento de la naturaleza de los genes.
El conocimiento de las estructuras portadoras de esos genes.
Los mecanismos de transmisión de estos.
La influencia de los genes en el desarrollo y evolución de los organismos.
El material hereditario esta formado por núcleo-proteínas y esta contenido en los cromosomas. Hay casos en que, en lugar de núcleo-proteínas, existen ácidos nucleicos solamente. Pero unidos o no a proteínas, los ácidos nucleicos son los portadores de la herencia biológica en todos los seres vivos. Este es uno de los hallazgos fundamentales de la biología actual.
Los ácidos nucleicos se han conocidos perfectamente gracias a virus y bacterias, dada la unidad biológica estructural y funcional de todos los seres vivos. El ADN y ARN intervienen en las biosíntesis de ellos mismos y de todos los demás componentes celulares, según un código genético que se transmite de padre a hijos.
Mendel utilizó, lo mismo que sus seguidores inmediatos, organismos diplontes procedentes de un cigoto que, al tener dos series de cromosomas, tiene dos series de genes. Pero mucho más sencillo es el estudio en los seres procariontes pues, al ser haploide, falta en ellos la meiosis y tienen una serie única de genes. Sin embargo, por haberse conocido primeramente la herencia mendeliana, se estudiará ésta en primer lugar.




Genes y Cromosomas:
Los Componentes Básicos de la Vida
Cromosomas La clave de la vida y de la herencia está en el núcleo de la célula, que es el centro que gobierna todas sus actividades.
El núcleo de cada célula sexual humana, contiene 23 cromosomas, que son unos orgánulos filiformes en forma de hilos y cada uno de ellos, tiene una larga molécula enroscada de una sustancia química llamada ADN o Acido desoxirribonucléico, que es la molécula informativa de la vida.
El ADN contiene más o menos 30,000 genes, cada uno de los cuales contiene información precisa sobre las características de la especie humana y las que va a tener la persona de forma particular.
En el momento de la fecundación, cuando los núcleos de las células sexuales se fusionan, se unen los cromosomas en pares y la célula empieza a dividirse en millones de nuevas células que si bien son iguales porque contienen las mismas partes, son diferentes en el contenido genético que contienen y que definen desde tejidos diferentes como es el sanguíneo del óseo o muscular, hasta las características de una persona.
El mundo de los genes es fascinante y gracias a los estudios del genoma humano se ha identificado el papel de cada uno de ellos en la conformación de la persona y hasta se han identificado los que determinarán ciertos problemas de salud en la vida adulta.
Los genes trabajan toda la vida, porque nuestro cuerpo no deja de producir nuevas células para suplir las que mueren, se desgastan o lastiman, por lo que gracias a ellos todos los tejidos de nuestro cuerpo, excepto el nervioso se renueva constantemente.
Pero todo lo relacionado con la genética no podría comprenderse, si no se hubieran descubierto las células madre.
Las células madre, son las que dan origen a todas las demás que formarán los tejidos y órganos del cuerpo, son las que determinan sus funciones y permiten no sólo el desarrollo del cuerpo, sino la regeneración de los tejidos a lo largo de la vida. Sin ellas estaríamos llenos de cicatrices y la mayoría de las enfermedades que sufrimos continuamente no podrían curarse, de hecho, sin la existencia de las células madres no podríamos vivir.
Y es que ellas son capaces de diferenciarse para originar un cierto tipo de célula que constituyen los tejidos fundamentales de los seres humanos, los musculares, óseos, cardíacos, hepáticos, sanguíneos, nerviosos, de la piel y todos los demás y aunque todavía sus mecanismos son un gran misterio que están tratando de resolver los especialistas, esto constituye en este momento una línea de investigación muy fuerte, ya que se piensa que muchos procesos degenerativos se pueden revertir con su manipulación y muchas enfermedades se podrán prevenir.


Genes Cada ser humano tiene aproximadamente 30.000 genes que determinan el crecimiento, el desarrollo y el funcionamiento de nuestros sistemas físicos y bioquímicos. Normalmente, los genes se encuentran distribuidos en 46 cromosomas (23 pares) dentro de nuestras células. Los pares del 1 al 22 son iguales en hombres y mujeres y se conocen como autosomas. El par número 23 está compuesto por los cromosomas que determinan el sexo. Las mujeres tienen dos cromosomas X y los hombres un cromosoma X y un cromosoma Y. Los espermatozoides y las células ováricas son diferentes de las demás células del organismo. Estas células reproductivas tienen sólo 23 cromosomas independientes cada una. Cuando un espermatozoide y un óvulo se combinan, al comienzo del embarazo, forman una célula nueva con 46 cromosomas. El ser humano resultante es genéticamente único y su diseño está determinado por el padre y la madre en partes iguales.




jueves, 27 de noviembre de 2008




la amuu hehehe
paramore
:)

haley williams




arriiba paramore losz amuu!!
xD

miércoles, 26 de noviembre de 2008

yo



YOP hehehe

ARN :0


El ácido ribonucleico (ARN o RNA) es un ácido
nucleico formado por una larga cadena de nucleótidos. Se ubica en las células de tipo procariota y las de tipo eucariota. El ARN se define también como un material genético de ciertos virus (virus ARN) y, en los organismos celulares, molécula que dirige las etapas intermedias de la síntesis proteica. En los virus ARN, esta molécula dirige dos procesos: la síntesis de proteínas (producción de las proteínas que forman la cápsula del virus) y replicación (proceso mediante el cual el ARN forma una copia de sí mismo). En los organismos celulares es otro tipo de material genético, llamado ácido desoxirribonucleico (ADN), el que lleva la información que determina la estructura de las proteínas. Pero el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo).
Como el ADN, el ARN está formado por una cadena de compuestos químicos llamados nucleótidos. Cada uno está formado por una molécula de un azúcar llamado ribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina, guanina, uracilo y citosina. Estos compuestos se unen igual que en el ácido desoxirribonucleico (ADN). El ARN se diferencia químicamente del ADN por dos cosas: la molécula de azúcar del ARN contiene un átomo de oxígeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN.
El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado en el transcurso por muchas más proteínas. El uracilo, aunque es muy diferente, puede formar puentes de hidrógeno con la adenina, lo mismo que la timina lo hace en el ADN. El porqué el ARN contiene uracilo en vez de timina es actualmente una pregunta sin respuesta.

EL ADN




EL ADN




El ácido desoxirribonucleico(polímero de unidades menores denominados nucleótidos) junto con el ácido ribonucleico, constituye la porción prostética de los nucleoproteidos, cuyo nombre tiene un contexto histórico, ya que se descubrieron en el núcleo de la célula. Se trata de una molécula de gran peso molecular (macromolécula) que está constituida por tres sustancias distintas: ácido fosfórico, un monosacárido aldehídico del tipo pentosa (la desoxirribosa), y una base nitrogenada cíclica que puede ser púrica (adenina ocitosina) o pirimidínica (timina o guanina). La unión de la base nitrogenada (citosina, adenina, guanina o timina) con la pentosa (desoxirribosa) forma un nucleósido; éste, uniéndose al ácido fosfórico, nos da un nucleótido; la unión de los nucleótidos entre sí en enlace diester nos da el polinucleótido, en este caso el ácido desoxirribonucleico. Las bases nitrogenadas se hallan en relación molecular 1:1, la relación adenina + timina / guanina + citosina es de valor constante para cada especie animal. Estructuralmente la molécula de ADN se presente en forma de dos cadenas helicoidales arrolladas alrededor de un mismo eje (imaginario); las cadenas están unidas entre sí por las bases que la hacen en pares. Los apareamientos son siempre adenina-timina y citosina-guanina. El ADN es la base de la herencia.
2. Replicacion Del ADN
Es la capacidad que tiene el ADN de hacer copias o réplicas de su molécula. Este proceso es fundamental para la transferencia de la información genética de generación en generación. Las moléculas se replican de un modo semiconservativo. La doble hélice se separa y cada una de las cadenas sirve de molde para la síntesis
de una nueva cadena complementaria. El resultado final son dos moléculas idénticas a la original.

3. Clases de ADN
El ADN es por lo común el constituyente básico de la cromatina (cromosoma) nuclear en las células eucarióticas, pero también existe en pequeña cantidad en las mitocondrias y cloroplastos. En los procariontes forma el nucloide (que a diferencia de los eucariontes no va asociado a proteínas, es desnudo) y en los virus (DNAvirus)que lo poseen constituyen el virión o elemento infestante. Por lo común su estructura tridimensional posee giro hacia la derecha (ß-ADN,dextrogiro) que es la forma más estable y ocasionalmente posee giro hacia la izquierda (z-ADN,levógiro) Acorde a las evidencias, sólo una pequeña parte del ADN constituye genes (menos del 10 %). Existen diferentes tipos que los podemos dividir en: -ADN de copia única(el 57 % del total) formados por segmentos de aproximadamente 1000 pares de nucleótidos del longitud, una pequeña parte de este ADN contiene los genes. -ADN repetitivo(20 %)son unidades de aproximadamente 300 pares de nucleótidos* que se repiten en el genoma unas 105 veces(unidades de repetición). Se intercalan con el ADN de copia única. -ADN satélite(altamente repetitivo: 28 %)son unidades cortas de pares de nucleótidos que se repiten en el genomio. Son característicos en cada especie y pueden ser separados por centrifugación. Constituyen la heterocromatina y no se le conoce función. Los porcentajes indicados son del hombre y el ratón, y las proporciones serían las mismas en otras especies. Nucleótido*: Es una molécula compleja formado por una base nitrogenada, un hidrato de carbono y un grupo fosfato (ácido fosfórico inorgánico), unidos entre sí por enlaces covalentes.Las bases nitrogenadas son anillos heterocíclicos compuesto además del carbono e hidrógeno por nitrógeno. Son de dos tipos fundamentales, las bases púricas (por ser derivadas de la purina, de dos anillos heterocíclicos) y las bases pirimídicas (por ser derivadas de la pirimidina de un solo anillo). Dichas bases son cinco, pero en realidad solamente cuatro aparecen en el ADN. Las bases púricas presentes son la adenina y guanina. Las bases pirimídicas son la citosina y la timina (el uracilo es característico del ARN). Si bien para la constitución del ADN se unifica a un solo grupo fosfato, existen en las células una serie de nucleótidos desingular importancia en el metabolismo celular. Estos producen enlaces muy ricos de energía y los di- y tri- nucleótidos como el adenosin-tri-fosfato(ATP) son los encargados de muchos procesos metabólicos. Debe contener información útil biológicamente y que pueda trasmitirse sin alteraciones. Por lo tanto debe permitir su duplicación para permitir el paso de célula a célula y de generación en generación. Por otra parte debe ser capaz de producir materia viva(proteínas) a partir de dicha información. Y deberá ser capaz de variar ocasionalmente, para favorecer los cambios evolutivos y de adaptación.La función principal del ADN es mantener a través de una sistema de claves (código genético) la información necesaria para que las células hijas sean idénticas a las progenitoras (información genética). Este proceso se almacena en la secuencia de las bases (aparentemente aleatoria), que tiene una disposición que es copiada al ARNm (traducción) para que en el ribosoma sintetice determinada proteína. Este proceso es también denominado "dogma central de la biología molecular". Por medio de los mecanismos de recombinación y mutaciones se obtienen las variaciones necesarias para adaptaciones y evoluciones. El núcleo dirige las actividades de la célula y en él tienen lugar procesos tan importantes como la autoduplicación del ADN o replicación, antes de comenzar la división celular, y la trascripción o producción de los distintos tipos de ARN, que servirán para la síntesis de proteínas. Como puede verse en estos últimos dibujos
, en una secuencia que va desde el ADN hasta el cromosoma.
El número 1 corresponde a la molécula de ADN,
En el número 2 , vemos el ADN unido a proteínas globulares, formando una estructura denominada "collar de perlas", formado por la repetición de unas unidades que son los "núcleosomas", que corresponderían a cada perla del collar.
En el número 3 se pasa a una estructura de orden superior formando un "solenoide".
En el número 4, se consigue aumentar el empaquetamiento, formando la fibra de cromatina, nuevos "bucles".
En el número 5, llegamos al grado de mayor espiralización y compactación, formando un denso paquete de cromatina, que es en realidad, un cromosoma.

4. Nucleosomas
Son unidades repetitivas formadas por un octámero de histonas (H2A, H2B, H3 y H4, dos de cada una), a manera de esferas aplanadas de 10 NM, alrededor del cual se arrolla una porción de ADN de 140 pares de bases en dos vueltas y sellados por fuera con la H1 en correspondencia con 60 pares de bases más, que actúan como un puente a otros núcleosomas. Esto hace que a la microscopía electrónica, por la digestión de ácidos débiles(se desprende la H1)se observen una estructura semejante a cuentas
de un collar.
El ADN, que el de una célula humana totalmente desenrollado es de 2 mts aproximadamente de longitud, sufre con esta estructura un empaquetamiento de 5 a 7 veces de su longitud.
Las células eucarióticas, que son la unidad anatomofuncional de la vida, se hallan constituidas por una membrana plasmática, un citoplasma y un núcleo. Obviando las diferencias entre las células
animales y vegetales, en el citoplasma se encuentran los organoides que son elementos necesarios para el desarrollo, y mantenimiento celular: el retículo endoplásmico y citoesqueleto como estructura interna; el aparato de Golgi como elemento organizador de secreciones celulares; los lisosomas para la digestión sustancias alimenticias y extrañas; las mitocondrias y cloroplastos como transductores de energía y los ribosomas como sintetizadores de proteínas. En su interior encontramos el núcleo, órgano responsable de la información celular, y por lo tanto de nuestro interés. De forma en relación con la de la célula que lo contiene, puede haber uno o varios en cada una. Y con tamaño variable tiene una relación equilibrada con el citoplasma (Índice núcleo plasmático). Constituido por una membrana nuclear, doble que lo rodea y horadada por poros grandes(150 Å) para el paso selectivo de los ARNm. En su interior existe un coloide semejante al del citoplasma (núcleo plasma o carioplasma). Existe un cuerpo muy denso(a veces doble o triple), que no posee membrana, el nucleolo constituido especialmente por fosfoproteínas y ARN. En el Microscopio Electrónico, se reconocen dos partes: una zona granular, formada por gránulos y una zona fibrilar, de finas fibrillas. Ambas zonas son de ribonucleoproteínas. Durante la mitosis desaparece y luego se forma a partir del organizador nucleolar, durante la telofase y se mantiene en la interfase. La región del cromosoma que corresponde al organizador nucleolar posee los genes que codifican los ARNr solubles. La zona fibrilar corresponde a la presencia de ARNr y ARNt y la zona granular contiene precursores ribosómicos. El elemento distintivo del núcleo es un cuerpo que aparece durante la interfase tiñéndose intensamente con los colorantes básicos(ej. hematoxilina) que se lo denominó cromatina(de cromos, color).La cromatina nuclear se halla durante la interfase en dos estados: la eucromatina, que constituiría al ADN funcional (en replicación o trascripción) y que con coloraciones normales se tiñe débilmente(forma laxa) y la heterocromatina, de ADN sin actividad y que se colorea intensamente(forma densa). Durante la división celular se reorganiza en cuerpos bastoniformes característicos llamados CROMOSOMAS. La cromatina esta constituida por ADN y proteínas. La cantidad total de ADN es constante para las células diploides de cada especie(valor C), por ejemplo la Drosophíla tiene 40 veces mas que la Escherichia coli(bacteria).Los vertebrados poseen cerca de 3 picogramos(pg), unas 700 veces mas que la E. coli. El hombre 2,87 pg y la salamandra (Amphiuma) 84 pg.La molécula de ADN está constituida por dos largas cadenas de nucleótidos unidas entre sí formando una doble hélice. Las dos cadenas de nucleótidos que constituyen una molécula de ADN, se mantienen unidas entre sí porque se forman enlaces entre las bases nitrogenadas de ambas cadenas que quedan enfrentadas. La unión de las bases se realiza mediante puentes de hidrógeno, y este apareamiento está condicionado químicamente de forma que la adenina (A) sólo se puede unir con la timina (T) y la guanina (G) con la citosina (C).La estructura de un determinado ADN está definida por la "secuencia" de las bases nitrogenadas en la cadena de nucleótidos, residiendo precisamente en esta secuencia de bases la información genética del ADN. El orden en el que aparecen las cuatro bases a lo largo de una cadena en el ADN es, por tanto, crítico para la célula, ya que este orden es el que constituye las instrucciones del
programa genético de los organismos. Conocer esta secuencia de bases, es decir, secuenciar un ADN equivale a descifrar su mensaje genético.
5. Mitosis
Es la división celular que consiste en que a partir de una célula se obtienen 2 células hijas, genéticamente idénticas a la madre. Se produce en cualquier célula eucarionte, ya sea diploide o haploide y como mantiene invariable el número de cromosomas, las células hijas resultarán diploides, si la madre era diploide o haploide. La división del citoplasma se llama citocinesis, y la división del núcleo, cariocinesis. Algunas células no realizan mitosis y permanecen en un estado interfásico, pero otras la realizan frecuentemente (células embrionarias, células de zonas de crecimiento, células de tejidos sujetos a desgaste.).Función: crecimiento y desarrollo del organismo multicelular, y la regeneración de tejidos expuestos a destrucción de células. En unicelulares, cumple la función de reproducción
asexual.Cada mitosis está precedida por una interfase, donde se produce la duplicación del material genético. Actúa como un mecanismo que asegura que cada célula hija reciba la misma información genética.Etapas: Profase, Pro metafase, Metafase, Anafase y Telofase.Resultado de una división mitótica es la obtención de células hijas(2) con igual carga cromosómica, o sea, de una célula diploide con su carga cromosómica diplode se obtienen dos células hijas también diploides. Siguiendo el principio de que los cromosomas hermanos(homólogos) no pueden ir a un mismo polo se distribuyen aleatoramente.
6. Núcleo CelularEs un corpúsculo contenido en el citoplasma de las células animales y vegetales, que contiene los cromosomas y es centro de información que dirige la síntesis proteica . Su forma es variable (redondo, oval o elíptico, etc.), su volumen es relativo (pero la relación núcleo-citoplasma es constante); ocupa una posición central en la célula (en general), pero puede estar situado parietalmente. En todas las células existe un núcleo, pero también hay células binucleadas y plurinucleadas. El núcleo se halla rodeado por una membrana nuclear atravesada por poros. Los núcleos presentan un doble aspecto según se hallen en reposo o en etapa de división celular. En período de reposo se observan en su interior nucleolos. Su composición química es compleja (proteínas, lípidos, compuestos inorgánicos, ADN, ARN, protaminas e histonas).En su interior se encuentra los cromosomas, que contienen el material genético responsable del funcionamiento celular y de la transmisión de los caracteres que se heredan.
El núcleo de las células eucarióticas es una estructura discreta que contiene los cromosomas, recipientes de la dotación genética de la célula. Está separado del resto de la célula por una membrana nuclear de doble capa y contiene un material llamado núcleoplasma. La membrana nuclear está perforada por poros que permiten el intercambio de material celular entre núcleoplasma y citoplasma. El núcleo es un orgánulo característico de las células eucariota. El material genético de la célula se encuentra dentro del núcleo en forma de cromatina.
7. El ARN: Otro Acido Importante
Este ácido, al igual que el ADN, está compuesto por tres sustancias: ácido fosfórico, un monosacárido del tipo pentosa (la ribosa) y una base nitrogenada cíclica que puede ser púrica (uracilo) o pirimidínica (adenina o citosina). La unión de la base nitrogenada con la pentosa forma un nucleósido, el cual al unirse con el ácido fosfórico da un nucleótido; la unión entre sí en enlace diester da el polinucleótido, en este caso el ácido ribonucleico. En algunos virus el ARN es el material de la herencia y experimenta autoduplicación; pero básicamente se encuentra en los ribosomas (ácido ribonucleico ribosómico) y como ácido de transferencia y mensajero.
Dos Grandes
Grupos De CelulasExisten dos tipos de células: las procariotas, que se encuentran en los organismos agrupados en el reino Moneras (bacterias) y se caracterizan, sobre todo, por la ausencia de un núcleo, es decir, no poseen una membrana nuclear que encierre la información genética de la célula, y las células eucariota, que están presentes en todos los seres vivos, excepto en las bacterias, y poseen un núcleo verdadero. Además de la membrana nuclear, las células eucariota poseen compartimientos y sistemas de transportes internos, formados por una compleja red
de membranas.


El ácido desoxirribonucleico(polímero de unidades menores denominados nucleótidos) junto con el ácido ribonucleico, constituye la porción prostética de los nucleoproteidos, cuyo nombre tiene un contexto histórico, ya que se descubrieron en el núcleo de
la célula. Se trata de una molécula de gran peso molecular (macromolécula) que está constituida por tres sustancias distintas: ácido fosfórico, un monosacárido aldehídico del tipo pentosa (la desoxirribosa), y una base nitrogenada cíclica que puede ser púrica (adenina ocitosina) o pirimidínica (timina o guanina). La unión de la base nitrogenada (citosina, adenina, guanina o timina) con la pentosa (desoxirribosa) forma un nucleósido; éste, uniéndose al ácido fosfórico, nos da un nucleótido; la unión de los nucleótidos entre sí en enlace diester nos da el polinucleótido, en este caso el ácido desoxirribonucleico. Las bases nitrogenadas se hallan en relación molecular 1:1, la relación adenina + timina / guanina + citosina es de valor constante para cada especie animal. Estructuralmente la molécula de ADN se presente en forma de dos cadenas helicoidales arrolladas alrededor de un mismo eje (imaginario); las cadenas están unidas entre sí por las bases que la hacen en pares. Los apareamientos son siempre adenina-timina y citosina-guanina. El ADN es la base de la herencia
.
2. Replicacion Del ADN
Es la capacidad que tiene el ADN de hacer copias o réplicas de su molécula. Este proceso es fundamental para la transferencia de la información genética de generación en generación. Las moléculas se replican de un modo semiconservativo. La doble hélice se separa y cada una de las cadenas sirve de molde para la síntesis
de una nueva cadena complementaria. El resultado final son dos moléculas idénticas a la original.

3. Clases de ADN
El ADN es por lo común el constituyente básico de la cromatina (cromosoma) nuclear en las células eucarióticas, pero también existe en pequeña cantidad en las mitocondrias y cloroplastos. En los procariontes forma el nucloide (que a diferencia de los eucariontes no va asociado a proteínas, es desnudo) y en los virus (DNAvirus)que lo poseen constituyen el virión o elemento infestante. Por lo común su estructura tridimensional posee giro hacia la derecha (ß-ADN,dextrogiro) que es la forma más estable y ocasionalmente posee giro hacia la izquierda (z-ADN,levógiro) Acorde a las evidencias, sólo una pequeña parte del ADN constituye genes (menos del 10 %). Existen diferentes tipos que los podemos dividir en: -ADN de copia única(el 57 % del total) formados por segmentos de aproximadamente 1000 pares de nucleótidos del longitud, una pequeña parte de este ADN contiene los genes. -ADN repetitivo(20 %)son unidades de aproximadamente 300 pares de nucleótidos* que se repiten en el genoma unas 105 veces(unidades de repetición). Se intercalan con el ADN de copia única. -ADN satélite(altamente repetitivo: 28 %)son unidades cortas de pares de nucleótidos que se repiten en el genomio. Son característicos en cada especie y pueden ser separados por centrifugación. Constituyen la heterocromatina y no se le conoce función. Los porcentajes indicados son del hombre y el ratón, y las proporciones serían las mismas en otras especies. Nucleótido*: Es una molécula compleja formado por una base nitrogenada, un hidrato de carbono y un grupo fosfato (ácido fosfórico inorgánico), unidos entre sí por enlaces covalentes.Las bases nitrogenadas son anillos heterocíclicos compuesto además del carbono e hidrógeno por nitrógeno. Son de dos tipos fundamentales, las bases púricas (por ser derivadas de la purina, de dos anillos heterocíclicos) y las bases pirimídicas (por ser derivadas de la pirimidina de un solo anillo). Dichas bases son cinco, pero en realidad solamente cuatro aparecen en el ADN. Las bases púricas presentes son la adenina y guanina. Las bases pirimídicas son la citosina y la timina (el uracilo es característico del ARN). Si bien para la constitución del ADN se unifica a un solo grupo fosfato, existen en las células una serie de nucleótidos desingular importancia en el metabolismo celular. Estos producen enlaces muy ricos de energía y los di- y tri- nucleótidos como el adenosin-tri-fosfato(ATP) son los encargados de muchos procesos metabólicos. Debe contener información útil biológicamente y que pueda trasmitirse sin alteraciones. Por lo tanto debe permitir su duplicación para permitir el paso de célula a célula y de generación en generación. Por otra parte debe ser capaz de producir materia viva(proteínas) a partir de dicha información. Y deberá ser capaz de variar ocasionalmente, para favorecer los cambios evolutivos y de adaptación.La función principal del ADN es mantener a través de una sistema de claves (código genético) la información necesaria para que las células hijas sean idénticas a las progenitoras (información genética). Este proceso se almacena en la secuencia de las bases (aparentemente aleatoria), que tiene una disposición que es copiada al ARNm (traducción) para que en el ribosoma sintetice determinada proteína. Este proceso es también denominado "dogma central de la biología molecular". Por medio de los mecanismos de recombinación y mutaciones se obtienen las variaciones necesarias para adaptaciones y evoluciones. El núcleo dirige las actividades de la célula y en él tienen lugar procesos tan importantes como la autoduplicación del ADN o replicación, antes de comenzar la división celular, y la trascripción o producción de los distintos tipos de ARN, que servirán para la síntesis de proteínas. Como puede verse en estos últimos dibujos
, en una secuencia que va desde el ADN hasta el cromosoma.
El número 1 corresponde a la molécula de ADN,
En el número 2 , vemos el ADN unido a proteínas globulares, formando una estructura denominada "collar de perlas", formado por la repetición de unas unidades que son los "núcleosomas", que corresponderían a cada perla del collar.
En el número 3 se pasa a una estructura de orden superior formando un "solenoide".
En el número 4, se consigue aumentar el empaquetamiento, formando la fibra de cromatina, nuevos "bucles".
En el número 5, llegamos al grado de mayor espiralización y compactación, formando un denso paquete de cromatina, que es en realidad, un cromosoma.

4. Nucleosomas
Son unidades repetitivas formadas por un octámero de histonas (H2A, H2B, H3 y H4, dos de cada una), a manera de esferas aplanadas de 10 NM, alrededor del cual se arrolla una porción de ADN de 140 pares de bases en dos vueltas y sellados por fuera con la H1 en correspondencia con 60 pares de bases más, que actúan como un puente a otros núcleosomas. Esto hace que a la microscopía electrónica, por la digestión de ácidos débiles(se desprende la H1)se observen una estructura semejante a cuentas
de un collar.
El ADN, que el de una célula humana totalmente desenrollado es de 2 mts aproximadamente de longitud, sufre con esta estructura un empaquetamiento de 5 a 7 veces de su longitud.
Las células eucarióticas, que son la unidad anatomofuncional de la vida, se hallan constituidas por una membrana plasmática, un citoplasma y un núcleo. Obviando las diferencias entre las células
animales y vegetales, en el citoplasma se encuentran los organoides que son elementos necesarios para el desarrollo, y mantenimiento celular: el retículo endoplásmico y citoesqueleto como estructura interna; el aparato de Golgi como elemento organizador de secreciones celulares; los lisosomas para la digestión sustancias alimenticias y extrañas; las mitocondrias y cloroplastos como transductores de energía y los ribosomas como sintetizadores de proteínas. En su interior encontramos el núcleo, órgano responsable de la información celular, y por lo tanto de nuestro interés. De forma en relación con la de la célula que lo contiene, puede haber uno o varios en cada una. Y con tamaño variable tiene una relación equilibrada con el citoplasma (Índice núcleo plasmático). Constituido por una membrana nuclear, doble que lo rodea y horadada por poros grandes(150 Å) para el paso selectivo de los ARNm. En su interior existe un coloide semejante al del citoplasma (núcleo plasma o carioplasma). Existe un cuerpo muy denso(a veces doble o triple), que no posee membrana, el nucleolo constituido especialmente por fosfoproteínas y ARN. En el Microscopio Electrónico, se reconocen dos partes: una zona granular, formada por gránulos y una zona fibrilar, de finas fibrillas. Ambas zonas son de ribonucleoproteínas. Durante la mitosis desaparece y luego se forma a partir del organizador nucleolar, durante la telofase y se mantiene en la interfase. La región del cromosoma que corresponde al organizador nucleolar posee los genes que codifican los ARNr solubles. La zona fibrilar corresponde a la presencia de ARNr y ARNt y la zona granular contiene precursores ribosómicos. El elemento distintivo del núcleo es un cuerpo que aparece durante la interfase tiñéndose intensamente con los colorantes básicos(ej. hematoxilina) que se lo denominó cromatina(de cromos, color).La cromatina nuclear se halla durante la interfase en dos estados: la eucromatina, que constituiría al ADN funcional (en replicación o trascripción) y que con coloraciones normales se tiñe débilmente(forma laxa) y la heterocromatina, de ADN sin actividad y que se colorea intensamente(forma densa). Durante la división celular se reorganiza en cuerpos bastoniformes característicos llamados CROMOSOMAS. La cromatina esta constituida por ADN y proteínas. La cantidad total de ADN es constante para las células diploides de cada especie(valor C), por ejemplo la Drosophíla tiene 40 veces mas que la Escherichia coli(bacteria).Los vertebrados poseen cerca de 3 picogramos(pg), unas 700 veces mas que la E. coli. El hombre 2,87 pg y la salamandra (Amphiuma) 84 pg.La molécula de ADN está constituida por dos largas cadenas de nucleótidos unidas entre sí formando una doble hélice. Las dos cadenas de nucleótidos que constituyen una molécula de ADN, se mantienen unidas entre sí porque se forman enlaces entre las bases nitrogenadas de ambas cadenas que quedan enfrentadas. La unión de las bases se realiza mediante puentes de hidrógeno, y este apareamiento está condicionado químicamente de forma que la adenina (A) sólo se puede unir con la timina (T) y la guanina (G) con la citosina (C).La estructura de un determinado ADN está definida por la "secuencia" de las bases nitrogenadas en la cadena de nucleótidos, residiendo precisamente en esta secuencia de bases la información genética del ADN. El orden en el que aparecen las cuatro bases a lo largo de una cadena en el ADN es, por tanto, crítico para la célula, ya que este orden es el que constituye las instrucciones del programa
genético de los organismos. Conocer esta secuencia de bases, es decir, secuenciar un ADN equivale a descifrar su mensaje genético.
5. Mitosis
Es la división celular que consiste en que a partir de una célula se obtienen 2 células hijas, genéticamente idénticas a la madre. Se produce en cualquier célula eucarionte, ya sea diploide o haploide y como mantiene invariable el número de cromosomas, las células hijas resultarán diploides, si la madre era diploide o haploide. La división del citoplasma se llama citocinesis, y la división del núcleo, cariocinesis. Algunas células no realizan mitosis y permanecen en un estado interfásico, pero otras la realizan frecuentemente (células embrionarias, células de zonas de crecimiento, células de tejidos sujetos a desgaste.).Función: crecimiento y desarrollo del organismo multicelular, y la regeneración de tejidos expuestos a destrucción de células. En unicelulares, cumple la función de reproducción
asexual.Cada mitosis está precedida por una interfase, donde se produce la duplicación del material genético. Actúa como un mecanismo que asegura que cada célula hija reciba la misma información genética.Etapas: Profase, Pro metafase, Metafase, Anafase y Telofase.Resultado de una división mitótica es la obtención de células hijas(2) con igual carga cromosómica, o sea, de una célula diploide con su carga cromosómica diplode se obtienen dos células hijas también diploides. Siguiendo el principio de que los cromosomas hermanos(homólogos) no pueden ir a un mismo polo se distribuyen aleatoramente.
6. Núcleo CelularEs un corpúsculo contenido en el citoplasma de las células animales y vegetales, que contiene los cromosomas y es centro de información que dirige la síntesis proteica . Su forma es variable (redondo, oval o elíptico, etc.), su volumen es relativo (pero la relación núcleo-citoplasma es constante); ocupa una posición central en la célula (en general), pero puede estar situado parietalmente. En todas las células existe un núcleo, pero también hay células binucleadas y plurinucleadas. El núcleo se halla rodeado por una membrana nuclear atravesada por poros. Los núcleos presentan un doble aspecto según se hallen en reposo o en etapa de división celular. En período de reposo se observan en su interior nucleolos. Su composición química es compleja (proteínas, lípidos, compuestos inorgánicos, ADN, ARN, protaminas e histonas).En su interior se encuentra los cromosomas, que contienen el material genético responsable del funcionamiento celular y de la transmisión de los caracteres que se heredan.
El núcleo de las células eucarióticas es una estructura discreta que contiene los cromosomas, recipientes de la dotación genética de la célula. Está separado del resto de la célula por una membrana nuclear de doble capa y contiene un material llamado núcleoplasma. La membrana nuclear está perforada por poros que permiten el intercambio de material celular entre núcleoplasma y citoplasma. El núcleo es un orgánulo característico de las células eucariota. El material genético de la célula se encuentra dentro del núcleo en forma de cromatina.
7. El ARN: Otro Acido Importante
Este ácido, al igual que el ADN, está compuesto por tres sustancias: ácido fosfórico, un monosacárido del tipo pentosa (la ribosa) y una base nitrogenada cíclica que puede ser púrica (uracilo) o pirimidínica (adenina o citosina). La unión de la base nitrogenada con la pentosa forma un nucleósido, el cual al unirse con el ácido fosfórico da un nucleótido; la unión entre sí en enlace diester da el polinucleótido, en este caso el ácido ribonucleico. En algunos virus el ARN es el material de la herencia y experimenta autoduplicación; pero básicamente se encuentra en los ribosomas (ácido ribonucleico ribosómico) y como ácido de transferencia y mensajero.
Dos Grandes
Grupos De CelulasExisten dos tipos de células: las procariotas, que se encuentran en los organismos agrupados en el reino Moneras (bacterias) y se caracterizan, sobre todo, por la ausencia de un núcleo, es decir, no poseen una membrana nuclear que encierre la información genética de la célula, y las células eucariota, que están presentes en todos los seres vivos, excepto en las bacterias, y poseen un núcleo verdadero. Además de la membrana nuclear, las células eucariota poseen compartimientos y sistemas de transportes internos, formados por una compleja red
de membranas.